A NATION OF CURIOUS MINDS

HE WHENUA HIHIRI I TE MAHARA

A NATIONAL STRATEGIC PLAN FOR SCIENCE IN SOCIETY
“YOU DON’T NEED TO TEACH A CHILD CURIOSITY. CURIOSITY IS INNATE. YOU JUST HAVE TO BE CAREFUL NOT TO QUASH IT. THIS IS THE CHALLENGE FOR THE TEACHER – TO FOSTER AND GUIDE THAT CURIOSITY.”
– SIR PAUL CALLAGHAN

SCIENCE IS EVERYWHERE
It helps us understand the world and how it works. One way or another, we apply science in just about everything we do – turning the raw materials of the earth into protein or steel; harnessing the energy of the sun, the wind and the tides; or devising new medical treatments that can help us live long and healthy lives.

CURIOSITY IS KEY
Curiosity underpins all these endeavours. Someone, somewhere has asked: how, what, when and why?
These people have curious minds: they have spotted a problem or seen a need and attempted to find a solution. They’ve asked questions, constructed a hypothesis, tested it and tested it again. And in doing so, they’ve used a scientific approach.

NEW ZEALAND NEEDS CURIOUS MINDS
Whether it’s dealing with a changing environment, confronting health challenges, improving our communities or producing high-value products and services, New Zealand needs people who can ask questions. And in an increasingly complex world, with increasingly complex problems, the answers to many of these questions will come from an understanding and application of science.
In this plan you can read about New Zealanders with curious minds. Their stories show that bright ideas to improve our lives, help solve environmental and social problems, or develop new products can come from anyone. All it takes is curiosity and a little imagination.
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ministers’ foreword</td>
<td>4</td>
</tr>
<tr>
<td>Executive summary</td>
<td>7</td>
</tr>
<tr>
<td>1. Setting the scene</td>
<td>10</td>
</tr>
<tr>
<td>2. Making the case</td>
<td>14</td>
</tr>
<tr>
<td>2.1 Why science in society matters</td>
<td>15</td>
</tr>
<tr>
<td>2.2 Objectives of the plan</td>
<td>17</td>
</tr>
<tr>
<td>2.3 The state of play</td>
<td>18</td>
</tr>
<tr>
<td>3. Strategic Action Areas and Priority Actions</td>
<td>22</td>
</tr>
<tr>
<td>3.1 Strategic Action Area 1: Enhancing the role of education</td>
<td>23</td>
</tr>
<tr>
<td>3.2 Strategic Action Area 2: Public engaging with science</td>
<td>27</td>
</tr>
<tr>
<td>3.3 Strategic Action Area 3: Science sector engaging with the public</td>
<td>30</td>
</tr>
<tr>
<td>3.4 Integrating Action: The participatory science platform</td>
<td>31</td>
</tr>
<tr>
<td>3.5 Other government initiatives supporting the plan</td>
<td>32</td>
</tr>
<tr>
<td>4. Implementing and evaluating the plan</td>
<td>34</td>
</tr>
<tr>
<td>4.1 Implementation approach</td>
<td>35</td>
</tr>
<tr>
<td>4.2 Timeframe</td>
<td>35</td>
</tr>
<tr>
<td>4.3 Monitoring and evaluation framework</td>
<td>36</td>
</tr>
<tr>
<td>Annex 1: Intervention logic</td>
<td>38</td>
</tr>
<tr>
<td>Annex 2: Process for developing the plan</td>
<td>39</td>
</tr>
<tr>
<td>Annex 3: Key definition</td>
<td>41</td>
</tr>
<tr>
<td>Annex 4: Description of initiatives</td>
<td>43</td>
</tr>
</tbody>
</table>
SCIENCE LITERACY IS FUNDAMENTALLY IMPORTANT TO THE FUTURE OF YOUNG NEW ZEALANDERS.
New Zealand has always been proud of its ‘do-it yourself’ attitude. From the very first humans to land here, generations of us have seen a problem and come up with an ingenious way to deal with it – from how to grow warm temperature kumara in a much colder climate to a novel piece of farm equipment put together in the barn. We can thank curious Kiwi minds for these examples of science and innovation, and the need for them is set to increase in the years ahead.

All New Zealanders should feel encouraged and equipped to deal with the challenges and opportunities presented by science and technology, and be capable of participating in the debates involving science. We also need an environment that helps New Zealanders to use our natural curiosity to interrogate, decide on and make the most of new developments and technologies.

New Zealand is a small, geographically isolated and well-educated country. To overcome the disadvantages of modest size, we must continue to maximise opportunities to harness our curiosity and cultivate our ability to be competitive and improve social and environmental outcomes. Our workforce must be skilled in science and technology to develop new high-value products, meet the demands of business, and mitigate and adapt to the challenges of a quickly changing world.

This Science in Society strategic plan is one of a number of Government initiatives that recognise the importance of science to New Zealand’s future. The project emerged from the National Science Challenges and sits alongside other initiatives such as the establishment of the Office of the Prime Minister’s Chief Science Advisor, the formation of Callaghan Innovation, and the recently released draft National Statement of Science Investment.

Developing stronger connections between science and society is a long-term project.

This plan puts special emphasis on our young people and science education. Science literacy is fundamentally important to the future of young New Zealanders. It gives our students a platform to meet challenges and compete, here at home and internationally. This plan accepts the challenge of building innovation, creativity and increased science literacy across the education sector. Lifting engagement and achievement in science education is absolutely vital. The education profession must prepare all New Zealanders to be participants, and leaders, in a 21st century economy and society.

Business, community, iwi and whānau engagement in science and technology education is critical to the success of our learners. The plan engages schools/kura, the community and scientists in partnerships that acknowledge the place of science/pūtaiao and technology/hangarau within and beyond the New Zealand Curriculum and Te Marautanga o Aotearoa.

The plan also identifies ways to increase engagement between the science sector and New Zealanders as publicly funded science is for the benefit of us all.
Government has a key role to play in facilitating better engagement in science across all sectors. This plan draws together the key issues around growing engagement in science in New Zealand, summarises available evidence and outlines a number of innovative actions to be developed, and presents them as the start of a conversation about the role of science in this country.

Developing a more publicly engaged science sector and a more scientifically engaged public is a collaborative and long-term process. It will require action from a wide range of stakeholders including government, research organisations, schools, non-government organisations, families/whānau, communities and businesses. We believe the ideas in this plan will get us a considerable way down that track. We also know that New Zealand is a nation of curious and creative people with great ideas. As the new actions in the plan are tested, reviewed and adjusted, we encourage you to get involved while also thinking about what could be done better. Your feedback will be most welcome when progress on the initial plan is reviewed in 2015.

Steven Joyce
Minister of Science and Innovation

Hekia Parata
Minister of Education
Science and the knowledge and innovation that flow from scientific progress have a critical role in creating and defining our future.

Many of today’s most complex decisions (e.g. on public health, natural resources stewardship and communications technology) require us all to weigh scientific evidence and our values. This will be even more so in future years as the world becomes increasingly connected and technology and knowledge advance. As New Zealanders we should all feel encouraged and equipped to engage in the key questions facing our society now and in the future. Improving New Zealand’s economic, social and environmental outcomes through growing an innovative society drives the need for an increasingly science, technology, engineering and mathematics (STEM)-competent workforce.

This plan responds to the science and society challenge for government considered by the National Science Challenges Panel to be central to the success of all the Challenges.

The Government’s objective in addressing this challenge is to “encourage and enable better engagement with science and technology across all sectors of New Zealand society” in order to deliver the outcomes of:

› more science and technology-competent learners, and more choosing STEM-related career pathways
› a more scientifically and technologically engaged public and a more publicly engaged science sector
› a more skilled workforce and more responsive science and technology.

These are long-standing challenges that will take time to address. While some actions are underway to encourage and enable better engagement with science and technology, more are needed if we are to make the objective and outcomes of this plan a reality. This plan sets out a strategic direction for the next 10 years and actions for the next three years.

This plan focuses on three Action Areas and one Integrating Action, each of which incorporates specific actions:

› **Action Area 1**: Enhancing the role of education
 › Improve initial teacher education through increased science and technology teaching competencies, leading to increased confidence
 › Better in-service professional learning and development for science and technology teachers
 › Build stronger links between science and technology educators, learners, technologists and scientists, in the classroom and in the community

› **Action Area 2**: Public engaging with science and technology
 › Establish a contestable fund for education and outreach initiatives on science and technology for harder-to-reach sectors of the community
 › Encourage young people into careers in science and technology
 › Encourage parents and whānau to engage with science
Encourage high-quality science journalism and media coverage
› Build stronger links between businesses, educators and learners, and between scientists and technologists to better connect business with science and interest more young people in studying science
› Build stronger links between the science and education sectors and science centres, museums and zoos
› Monitor data about public attitudes to, and engagement with, science and technology

Action Area 3: Science sector engaging with the public
› Support scientists to contribute to broader science education while advancing their work
› Support scientists and science organisations to continue to use leading edge practices and standards to engage the public in identifying research questions and sharing the results
› Ensure that scientists know how to make their research accessible to wider audiences
› Increase the profile of Māori science/pūtaiao researchers and of researchers engaged in mātauranga Māori

Integrating Action: Participatory science platform
› Integrating all three Action Areas through a platform to engage students, communities and scientists in participatory science.

This plan recognises and acknowledges the importance of mātauranga Māori to build cultural confidence and identity, and how, through this, New Zealand can grow its skills and generate innovation and creativity. Mātauranga Māori is Māori knowledge that is dynamic, building from earliest traditions to future knowledge. Each of the three Action Areas and the Integrating Action will be developed in ways that respect whānau, hapū and iwi as the key conduits of mātauranga Māori, and focus on realising the potential gain for New Zealand through building capability in science and technology to support Māori economic development and management of natural resources.

The Ministry of Business, Innovation and Employment and the Ministry of Education, together with the Office of the Prime Minister’s Chief Science Advisor (PMCSA), will oversee implementation of the plan by government agencies, iwi and other sectors including the education, science, business and museum sectors.

This initial Science in Society strategic plan will be subject to ongoing monitoring and evaluation. It will respond to changing needs and contexts by adapting and extending initiatives that are making a measurable contribution to the expected outcomes.

The Science in Society Reference Group will reconvene in 2015 to consider progress in delivering on the objective and outcomes and to incorporate wider stakeholder views into its ongoing development and implementation.

The following diagram summarises the initial plan’s approach in responding to the challenges of better engagement with science and technology.
A NATION OF CURIOUS MINDS

OBJECTIVE

ENCOURAGE AND ENABLE BETTER ENGAGEMENT WITH SCIENCE AND TECHNOLOGY IN ALL SECTORS OF NEW ZEALAND

NEW ACTIONS

<table>
<thead>
<tr>
<th>ENHANCING THE ROLE OF EDUCATION</th>
<th>PUBLIC ENGAGING WITH SCIENCE AND TECHNOLOGY</th>
<th>SCIENCE SECTOR ENGAGING WITH THE PUBLIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Science Skills in Education initiative</td>
<td>• New contestable fund for science and technology outreach and initiatives for harder-to-reach audiences</td>
<td>• Implement a participatory science platform</td>
</tr>
<tr>
<td>• Teachers in Industry project</td>
<td>• Better connect business/educators/learners/local government with the science sector</td>
<td>• The Royal Society of New Zealand to develop a code of practice for public engagement for scientists</td>
</tr>
<tr>
<td>• Review positioning and content of digital technology within the New Zealand Curriculum/Te Marautanga o Aotearoa</td>
<td>• Increase girls’ participation in science/ICT study and careers</td>
<td>• Public engagement in implementing the National Science Challenges</td>
</tr>
<tr>
<td>• Increase the science and technology content in initial teacher education</td>
<td>• Better connect museums/zoos/science centres with the science community</td>
<td>• Access to public engagement training for researchers</td>
</tr>
<tr>
<td></td>
<td>• Parents and whānau to be more engaged with science</td>
<td>• Increase the profile of researchers in pūtaiao/mātauranga Māori</td>
</tr>
</tbody>
</table>

PARTICIPATORY SCIENCE PLATFORM

SUPPORTING ACTIONS
SCIENCE IS CENTRAL TO THE MANY GLOBAL CHALLENGES WE FACE...
Science and technology are critical for enhancing living standards through economic growth and improving social and environmental outcomes. Today, science is embedded in the many decisions policy makers, business, individuals and societies must make. Societies with strong ‘science capital’ sustain more innovative economies and have a greater awareness of both the opportunities and limits of science in development and wellbeing. Science is central to the many global challenges we face (from environmental challenges to an aging and increasingly urban population, for instance).

Following significant public engagement led by Government in early 2013, the National Science Challenges Panel recommended a set of national science challenges to address our most pressing health and environmental issues, and to advance our economy through innovation. The Panel also recommended a ‘Science in Society leadership challenge’ as central to the success of the National Science Challenges and the most important challenge if New Zealand is to responsibly apply science and innovation and benefit optimally from its investment in scientific research.

In May 2013, the Government formally accepted the ‘Science in Society leadership challenge’, with the Minister of Science and Innovation and the Minister of Education subsequently announcing development of this strategic plan in November 2013. Annex 1 sets out the process for developing this plan.

The plan sets out the objective and outcomes the Government wishes to achieve to strengthen the place of science in society over the next 10 years. It sets out the available evidence on where New Zealand is now. It concludes by setting out a three-year plan of action to make progress towards the objective and outcomes.

The plan does not cover the supply of mathematics skills and demand for STEM skills, as these are being addressed through the Business Growth Agenda and the literacy and numeracy taskforce.

The plan is addressed to all New Zealanders. To be effective, it is important to be specific about target audiences where actions can make the most difference. In particular, the plan recognises that there are certain stakeholders in our social relationship with science who are important ‘agents of change’. These are:

› students, teachers and the compulsory learning sector
› parents, whānau and communities

1 “Science capital refers to science-related qualifications, understanding, knowledge (about science and ‘how it works’), interest and social contacts (e.g. knowing someone who works in a science-related job).” This definition from Archer, et al 2013. ASPIRES: Young people’s science and career aspirations, age 10–14. Department of Education and Professional Studies and King’s College London, p3
The plan presents a coherent approach to addressing the challenge of strengthening the role of science in our society. The actions in the plan support wide engagement to deliver on the plan’s objective and outcomes.

CASE STUDY

HOW COULD SURGERY BE IMPROVED?

In her job as clinical leader of orthopaedics at New Plymouth’s Southern Cross Hospital, nurse Lorraine Parthemore felt the hospital’s method of traction for patients undergoing surgery to correct a damaged disc in the neck left a lot to be desired. It was cumbersome and obstructive, adding to the time needed to undertake the operation. “I thought there had to be a more streamlined way to set it up,” she says, but couldn’t find anything better on the market. With encouragement from colleagues, she designed a pulley device with a counterweight that could be attached directly to the operating table to keep the neck in traction. A prototype was produced and cleared for use. “It really shortened the time needed for the procedure,” Lorraine says. The Parthemore Pulley has subsequently gone into production with Nelson medical equipment manufacturer Opritech, and Taranaki Base Hospital bought the first one off the assembly line. It is now being marketed elsewhere in New Zealand. Lorraine puts her inventive streak down to her childhood growing up on a Taranaki farm. “In the 60s everybody was frugal and we made do with what we had, adapting things to suit – like making calf covers out of sacking and baling twine.”
HOW CAN A COMMUNITY USE SCIENCE TO ADDRESS A LOCAL ISSUE?

In 2012, Tolaga Bay school principal Nori Parata asked the Allan Wilson Centre for Molecular Ecology and Evolution (AWC) for help with what was initially a school project to turn around some of the damage done to the local environment and landscape. The teachers and students were interested in how to return parts of the Bay to a state more closely resembling what Captain Cook and his men would have seen when they first arrived in 1769. She realised the project needed scientific support if it was going to succeed. The AWC, with which the school had had a relationship since 2004, was asked to work with the community. Following early discussions with Te Aitanga a Hauiti and the Tolaga Bay community, the project was expanded to encompass the wider Uawa catchment – and how to sustain both the health of the environment and the health and prosperity of the people. Now the AWC is providing that scientific support in several ways. The Centre has provided two experienced land science advisers who have assisted the community in pulling together their overarching vision and identifying broad work areas. Dedicated researchers have been provided to help execute projects such as examination of water quality, and talks given by AWC scientists on various topics of interest. The project has strong community involvement from school students through to farmers and forestry companies. The aim is to extend community co-operation still further to include everyone with a stake in the long term future of Uawa/Tolaga Bay. The project will see, among other things, river banks restored, native birds and vegetation re-established (they've already propagated native plants with seeds gifted by Kew Gardens from plants collected in the Bay by Joseph Banks in 1769), water quality improved and kai moana (seafood) sources rejuvenated. There is a strong focus on ensuring work is integrated with, and supports, agricultural and forestry management – to ensure long term economic benefit.
SOCIAL LICENCE EXISTS WHERE THERE IS AN ENVIRONMENT OF MUTUAL UNDERSTANDING AND TRANSPARENT AND DELIBERATE COMMUNICATION BETWEEN THE PUBLIC AND THE SCIENCE SECTOR.
2. MAKING THE CASE

2.1 Why science in society matters

21st century life is driving the need to increase our engagement with science and technology

Many of today’s toughest decisions at local, national and international levels – about public health, natural resources stewardship or new and emerging technologies, for instance – require all of us to weigh both scientific evidence and social values. The National Science Challenges are science priorities that respond to the most important, national-scale issues and opportunities identified by science stakeholders including the New Zealand public. These encompass environmental, societal, health and economic goals. Many of these and other challenges we face today and into the future will require creative and innovative solutions that have a basis in scientific discovery and technological application. New Zealanders should feel encouraged and equipped to engage in the key questions facing our society now and in the future.

The production and application of scientific knowledge and new technologies often imply trade-offs that we need to weigh carefully, such as how to prioritise research investment, and the potential for unintended consequences. Addressing these trade-offs requires social licence, because these are complex issues which no single group, such as scientists, government or businesses, should make on behalf of New Zealanders without their input. Social licence exists where there is an environment of mutual understanding and transparent and deliberate communication between the public and the science sector. This plan includes actions to create the environment needed for social licence to exist.

We need an increasingly STEM-competent workforce for a more innovation-focused society

New Zealand’s economic and social wellbeing depends on the productivity and competitiveness of the economy and the knowledge we have to help make informed decisions as a society. Innovation that leads to increased productivity and promising solutions to society’s most pressing concerns is increasingly being seen around the world as an important way to generate economic growth and improved living standards.

Improving policies and practices will enable New Zealand to be more focused on innovation. To do this, New Zealand needs a high-performing and responsive science and innovation system and skilled people who can solve problems and create and deliver high-value products and services for sustainable economic, social and environmental wellbeing. We need businesses, policy makers and citizens who are able to create, absorb and apply new ideas and approaches.

Our science system – particularly the tertiary education organisations that undertake research-led teaching – has a vital role in educating a future generation of scientists, technologists and innovators with the advanced science skills that are needed in leading-edge businesses. New Zealand has to be seen internationally as an ‘innovation destination’. We must be able to attract and retain the right talent at the right time to contribute to our vital science. Attracting overseas and domestic investment in our research is also critical for economic growth.

2 Programme for International Student Achievement Draft Science Framework, p3
3 Madsen, JB. 2010. The anatomy of growth in the OECD since 1870. Journal of Monetary Economics, 57(6), pp753–767
A creative culture and a wide range of skills are needed for innovation, societal advancement and sound environmental stewardship. Internationally, it is recognised that STEM skills underpin the development of new practices and technologies, the application of existing technologies and the development of new, high-value products and services. STEM skills and competencies also underlie growth in many industries, and are highly transferable across industries.

STEM skills, like other kinds of skills, are acquired by individuals over time and in a wide range of ways. They need to be developed as part of the key competencies for life-long learning. An individual with higher levels of competency has a much lower likelihood of experiencing both economic and social disadvantage than an individual with lower competency levels.

Students’ career choices are influenced beyond school/kura by family, whānau, iwi, business and the wider community, with parents providing the most important influences. Greater community engagement with science and technology could increase the value students and their family or whānau place on the opportunities STEM subjects offer as career pathways.

The Ministry of Education (MoE) is focused on ensuring the education system delivers on the Government’s key goals of improved outcomes for all New Zealanders, and stronger economic growth for New Zealand. It is the lead agency on boosting skills and employment. Its ultimate goal is to equip young people with the skills to live a fulfilling life and contribute to New Zealand’s economic prosperity.

5 Ministry of Business, Innovation and Employment. Occupation Outlook 2014, p8
7 New Zealand Curriculum 2007
The Ministry of Business, Innovation and Employment (MBIE) aims to grow New Zealand for all. It is focused on improving the productivity and competitiveness of our economy and the knowledge we have to help make informed decisions as a society. The science system contributes know-how for economic growth, helps to identify and manage risks in the natural world, and provides skilled researchers and workers to support an innovation economy. MBIE aims to increase the economic contribution of the skills, science and innovation systems.

2.2 Objective and outcomes

The objective of this strategic plan is to:

› encourage and enable better engagement with science and technology across all sectors of New Zealand.

We expect progress towards the objective will contribute to three expected outcomes:

› More science and technology-competent learners, and more choosing STEM-related career pathways
› A more scientifically and technologically engaged public and a more publicly engaged science sector
› A more skilled workforce and more responsive science and technology.

WHAT IF THERE WAS A SAFER WAY TO CUT KINDLING?

When Ayla Hutchinson’s mother had a close shave with the axe as she was cutting firewood, the Inglewood teenager – then aged 13 – decided to design a safer way to do the job. “My mum nicked the top of her finger when she was cutting kindling and I was doing a science board at the time so I ended up doing something to help fix the problem.” Ayla’s product is called the Kindling Cracker and has the axe head, cutting edge up, welded within a metal frame. The log is placed on the axe and struck with a mallet or hammer to split it. Ayla’s invention has been a great hit; after winning the Fieldays Young Inventor of the Year Award, she put Kindling Cracker into production. The 200 devices she displayed at the 2014 Fieldays sold out in two days, as did her website outlet. Ayla says people have told her they wished her Kindling Cracker had been around 20 years ago, showing her where their finger used to be. Meanwhile, the accolades keep coming. In 2014, Ayla was named Most Inspiring Individual at the New Zealand Innovators Awards and was named a regional finalist for the 2014 Google Science Fair – just one of 30 young people in her age group chosen worldwide. She’s also among 15 people from around the world nominated for a Scientific American Science in Action Award.

CASE STUDY

– Ayla Hutchinson with the Kindling Cracker
2.3 The state of play

How competent are STEM learners and how many are choosing STEM-related career pathways?

There are STEM skills shortages

There are skills shortages for many kinds of scientists, engineers, technologists, health and ICT professionals. A number of factors are expected to lead to increasing demand for workers in many STEM-related occupations. In addition, many jobs not directly STEM-related require STEM competencies. Internationally it is estimated that up to 75 percent of high-growth jobs require STEM skills and competencies.

The number of NZ graduates is growing, but international demand is growing faster

There is global demand for those with STEM qualifications. Often those who gain the STEM qualifications required to resolve shortages either are lost from New Zealand to the global job market or pursue alternative careers. MBIE estimates that less than half of New Zealand graduates who studied and highly skilled immigrants are often required to fill the gaps. However, it is expected to become increasingly difficult to attract these immigrants as wages rise in increasingly knowledge-intensive Asian economies.

The number of domestic students completing bachelor degrees across all fields of study has increased from 19,596 in 2005 to 25,350 in 2012. For example, in the natural and physical sciences the increase has been from 1,937 in 2005 to 2,649 in 2012. The numbers of degree-level engineering training places has recently increased. The industry training providers are facing difficulties in growing engineering at technician and technology qualification levels. In 2012, 15,560 domestic students, or 37 per cent of domestic students, completed qualifications at bachelor level and above in health; natural and physical sciences; engineering and related technologies; IT; and architecture and building. Girls and women are under-represented in studying and working in STEM, apart from in the health and biological sciences.

New Zealand school student performance in science has declined

New Zealand has a highly respected education system. The World Economic Forum’s Global Competitiveness Index for 2013 noted that New Zealanders spend the longest time in education from primary to tertiary, at 19.67 years, and ranked New Zealand seventh for overall education indicators out of 142 countries.

Despite this, there is a gradual decline over years 11–13 in the proportion of students enrolled in science-related subjects. New Zealand is not unique in this, as declines have been seen in many other developed countries.

New Zealand students’ performance in science has also declined, and the decline is more marked in the later years of schooling. The average performance of New Zealand year 5 students for science in 2010/11 was significantly lower than in 2002/03 and there has been no significant change in performance for year 9 students since 1994/95. The performance of New Zealand students at age 15 years (most students are in year 10 at this age) in science remained relatively stable up to 2009 and declined between 2009 and 2012.

10 Immigration New Zealand: www.immigration.govt.nz/essential skills.htm
15 Association for Women in the Sciences. 2011 Snapshot: Encouraging women to use and develop their scientific abilities to achieve their full potential
17 From 2008 to 2010 students with more than 14 credits in science rose from 73.2 per cent to 73.5 per cent and then dropped in 2011 and 2012 to 71.4 per cent and 71.6 per cent respectively
18 Trends in International Mathematics and Science Study
19 OECD. Programme for International Student Assessment 2012
Changes in the average science literacy score for New Zealand students aged 15 years between 2006 and 2012 compared to the OECD average

The National Monitoring Study of Student Achievement (NMSSA) and the Programme for International Student Assessment (PISA) results show growing inequity in student performance in science in New Zealand.

There is limited data on school student performance in technology

There is limited data on student performance in technology because it is not measured by PISA or the Trends in International Mathematics and Science Study (TIMMS), and NMSSA is yet to assess it.

What is causing the decline in student performance?

Research suggests that student achievement in science is declining in part because science teachers are not always confident in teaching science, particularly to diverse groups. Teachers do not always have access to the appropriate resources. Furthermore, some students lack confidence in their ability to succeed in STE subjects and lack support for deciding on senior secondary school subjects.

How scientifically and technologically engaged is the public and how publicly engaged is the science sector?

There is no current comprehensive measure of public engagement in science or technology or adult STEM literacy

It is difficult to measure public engagement in science and technology and there is no internationally accepted metric to capture it. The best New Zealand evidence is a survey in 2010 of public attitudes to science. The survey identified that about half of New Zealanders were actively interested in science and the other half did not recognise the relevance of science in their daily lives (44 per cent)

20 Prepared by the Ministry of Education from data from the Programme for International Student Assessment
22 This survey, Science and the General Public 2010, was commissioned by the Ministry of Research, Science and Technology. Similar surveys were also commissioned in 2002 and 2005
23 Hipkins, R. 2010. public attitudes to science: rethinking outreach initiatives. New Zealand Science Review, 67(4), p109. The 44 per cent of New Zealanders with a detached interest in science are described in the survey as a ‘mainstream group’. This group understands that science is important, but they do not consider it is relevant to their busy, everyday lives. They perceive that: science information lacks relevancy; they receive too much or too little information; they lack trust in scientists, and they lack understanding of career pathways for their children/young relatives.
or were disengaged from science (9 per cent). Similar surveys have been done in other countries although comparisons are difficult given differences in the questions24.

Relative to comparable countries, a high proportion of New Zealand adults have a secondary or tertiary qualification25. There are no data on the proportion of these qualifications that are in STEM subjects. From 2016, New Zealand will assess adult competencies in reading, mathematics and problem solving in technology-rich environments through the Programme for the International Assessment of Adult Competencies.

There are limited data on the level and effectiveness of the engagement of the science sector and science and technology communicators with the public

There is increasing recognition of the broader social responsibility of scientists to engage with the wider public in meaningful ways26. It is difficult to track and measure this engagement, in part because it can take place in a great variety of venues and with various goals. Two main ways that scientists engage with the public is by conveying knowledge to governments to ensure science-informed public policy and decision making, and through more direct engagement with the public.

It is difficult to measure the impact of these types of engagement27. It is also difficult to estimate the proportion of government expenditure on public engagement by science organisations. However, a proportion of the $1.4 billion28 invested by Government in supporting science and innovation in New Zealand was spent by universities and science organisations on making research more accessible to end-users through communication, public outreach and public education activities. Other government investment in these organisations may also be spent on communication, public engagement and education.

Many local government and private sector organisations, such as industry training providers, zoos, museums, science centres, charities and businesses, engage with the public about science and technology for education, cultural and marketing reasons. The Government also invests $167 million in public broadcasting services and funding museums29.

Since the Science Media Centre was established in 2008, ‘science’ in the media has increased by 75 per cent30.

As scientific engagement with the public has increased and changed in character, potential ethical issues have emerged and it is timely for the science sector to reconsider standards of scientific conduct.

Use of evidence in policy development

In part as a response to a report by the PMCSA, the State Services Commission (SSC) recently reviewed government agencies to identify where departmental science advisors could lift internal capabilities to take up research and new knowledge. A network of advisors across government departments chaired by the PMCSA will grow in responsibility as additional science advisors are appointed. These changes are expected to help strengthen the channels of communication with the science sector and progress will be monitored as departmental science advisor positions are filled. The network is to report on progress to the State Services Commissioner in 12 months.

25 35 per cent of New Zealand adults have a secondary qualification and a further 21 per cent have a tertiary qualification, New Zealand Census 2013
28 This includes: $967m from Vote Science and Innovation, $335m from Vote Tertiary Education, $90m from Vote Primary Industries and $18m from other government areas
29 The appropriations in Vote Arts, Culture and Heritage for 2013/14 are $134.417m (for public broadcasting services) and $33.094m (for museum services). The $33.094m (for museum services) funds the Museum of New Zealand Te Papa Tongarewa
30 http://www.sciencemediacentre.co.nz/five-years-of-science-in-the-media
HOW CAN NEW ZEALANDERS GAIN ACCESS TO SCIENTIFIC RESEARCH?

All New Zealanders have an interest in the quality of their lakes and rivers. There’s a vast array of research about freshwater quality but how do you make this information accessible to the general public and to the very people who might be able to do something about it? The country’s 16 regional unitary councils, the Ministry for the Environment, Cawthron Institute and Massey University teamed up to set up a website that provides freshwater science to the public in an easy-to-understand format. Land, Air and Water Aotearoa – or LAWA as it’s known – provides data from 1,100 freshwater monitoring sites around the country including bacteria, nitrogen and phosphorous levels, water clarity and acidity. By visiting the LAWA site, people can check out the current state of their local waterway, how it compares with other sites, and whether the water quality is improving, getting worse or staying the same. People can also use the site to share river-related news and events or report river observations. The project was developed with funding from the Tindall Foundation. Co-founder Sir Stephen Tindall wanted to see the LAWA vision become reality after experiencing difficulty accessing clear information about New Zealand rivers. “To me the fact that the quality of our waterways is on the decline is a horrifying thought”, he says. “By collecting data we can identify problems early and see if water quality is improving or not.” There are plans to extend the site to include data relating to the land, air, coasts, biodiversity and biosecurity.
…SUPPORT ALL YOUNG NEW ZEALANDERS TO BE RESILIENT LEARNERS WITH FUTURE-PROOFED SKILLS…
This section sets out three Action Areas designed to deliver on the objective and outcomes of the plan. Each Action Area includes a set of priority actions for the next three years that are divided into innovative actions developed specifically for the plan (described as ‘new actions’) and work already underway that will be aligned with the objective of the plan (described as ‘supporting actions’). These actions maintain a view on the 10-year horizon, commensurate with the National Science Challenges.

In addition to these Action Areas, at the heart of this plan is an Integrating Action that spans all three Action Areas: the participatory science platform. This platform (described in section 3.4) is designed to simultaneously:

- work with the education sector to make it easier to bring ‘real-world’ science into the classroom by connecting teachers with science professionals
- enable and foster the public’s understanding of, and engagement in, real-world science through research that is relevant to local communities
- create opportunities for science professionals to become better engaged with the public by contributing both to science education and to filling knowledge gaps that are locally relevant and scientifically valuable.

3.1 Action Area 1: Enhancing the role of education

The principal goal of Action Area 1 is to support all young New Zealanders to be resilient learners with future-proofed skills to understand, assess and apply rapidly changing science and technology knowledge to their everyday lives. This goal will contribute to building creativity, innovation and increased critical science literacy. Action Area 1 will include a focus on quality teaching and learning, and providing additional opportunities to enhance competencies, confidence and dispositions that grow scientific knowledge, curiosity and creativity in students in partnership with schools/kura, families, whānau, iwi, and the business and science communities.

The activities in Action Area 1 are focused on five key intervention sites: Early Childhood Education, primary-level education; secondary-level education; the transition to further study/training or employment; and science leadership.

These activities will explicitly focus on enabling a future-oriented science and technology education system. Integrative thinking for improving science and technology teaching and learning, skills and dispositions for innovation, and changes to pedagogical practice as e-learning and ICT evolve will be central. This will include how the focus of science education should differ at the different levels of schooling.
1. **Improve initial teacher education with increased science and technology teaching competencies, leading to increased confidence**

 New action

 - Lift the science and technology content in initial teacher education

 We will work with initial teacher education providers, qualification accreditation bodies and relevant professional bodies in considering the nature and scope of science and technology content in initial teacher education. This could form a component of under-graduate qualifications for early childhood and primary education, and would be targeted to lift the confidence of graduating teachers to teach science (teachers currently report limited confidence, particularly at years 7–8).

 Early childhood and primary education is important for imparting foundation curiosity and learning behaviours for learners’ future attitudes and practices toward science and technology. To maximise this opportunity new primary teachers need the confidence and content knowledge to sustain student engagement and progress.

2. **Improve the quality and relevance of continuing professional learning and development (PLD) opportunities for teachers in science and technology**

 The Government spends more than $80 million every year on PLD to support the development of a highly capable profession, and a PLD system that builds the skills of teachers and education leaders. This investment is intended to deliver measurable gains for students across the curriculum, including science/pūtaiao, technology/hangarau and mathematics/pāngarau.

CASE STUDY

HOW CAN A COMMUNITY IMPROVE STUDENTS’ ENGAGEMENT WITH SCIENCE?

A collaborative network – the Hutt Valley Primary Science Education Network – has been set up to address the challenges in engaging and retaining students in science education. The network, administered by the Hutt-based Open Polytechnic, brings together school principals, teachers and other key individuals to provide an opportunity to learn from each other how best to champion science education at the primary level. The network builds on an Open Polytechnic initiative for 2014 offering all teachers, fee-free, its distance-learning Graduate Certificate in Primary Science Teaching (Curriculum) programme. The network includes GNS Science and the Hutt City Council, which has earmarked $120,000 for Mayoral scholarships worth $2,500 each. These will be available to each Lower Hutt primary school with a teacher studying for the graduate certificate and is to be put towards additional science resources for that teacher to use in their classroom or for teacher release time. The initiative builds on research that shows the best time to build an interest in science is when children are at primary school. Hutt Mayor Ray Wallace points out the importance of science education for the future of the region. “Giving primary teachers support to inspire our youth in the sciences will help transform the Hutt Valley into one of New Zealand’s leading export and economic growth centres, based on science, engineering and technology.”
In 2014, about $5.7 million was appropriated by government to science and technology PLD. This figure does not include the science and technology PLD included in other contracts, and that schools can apply for on the basis of need.

The Minister of Education has appointed an Advisory Group with representatives from across the education sector to provide advice on the design of future PLD across the compulsory schooling sector. The group will provide advice on what improvements should be made to the targeting of centrally funded PLD to achieve a system-wide lift in student achievement, and will provide advice on how changes could be implemented to achieve the maximum impact.

New actions

› **Science Skills in Education initiative**

We will establish an initiative to support schools and teachers to build confidence and access resources to develop rich, contextualised science programmes that are exciting for students. It will include assisting teachers to continue their science education, focusing on skills that reflect science/pūtaiao in the national curriculum, and expanding the availability of the Sir Paul Callaghan Science Academy initiative. This initiative focuses on professional learning and will explore links to the Teachers in Industry project as appropriate.

› **Teachers in Industry project**

We will establish a project for teachers to connect schools with science-intensive businesses to enable teachers to spend a period of time in a business to bring business-relevant content into their science lesson plans.

Supporting actions

› Provide teachers of science in years 1–10 with opportunities to work with research organisations to develop leadership skills and enhance the teaching of science within schools and communities.

› Support the Science/Biotechnology Learning Hubs to provide a high-quality online repository of New Zealand science and resources to support science education for teachers, students and communities.

3. **Build and maintain meaningful links between science and technology educators and learners, and science professionals and technologists, both in the classroom and through opportunities that engage the wider community**

Partnerships with tertiary education organisations, CRIs, private bodies, science organisations (such as museums, science centres, zoos, aquaria, observatories) and secondary-tertiary programmes that enable participants to experience tertiary-level educational activities are all key for learning outside the classroom. These learning experiences outside the classroom need to be integrated meaningfully within teaching and learning programmes.

New action

› **Develop and implement a participatory science platform**

This platform (described below at 3.4) will engage schools/kura, community-based groups and organisations, and science professionals in questions that are scientifically rigorous, locally relevant and pedagogically innovative. The platform includes central coordinator roles that will oversee the platform and be a conduit between learning environments and scientists.

4. **Review the positioning and content of digital technology within the New Zealand Curriculum and Te Marautanga o Aotearoa**

New action

› **Review the positioning and content of digital technology**

We will work alongside sector partners to review the positioning and content of digital technology within the framework of the New Zealand Curriculum and Te Marautanga o Aotearoa.
Primary school science teachers play a key role in cultivating students’ curiosity about the world around them. Since 2012, the Sir Paul Callaghan Science Academy has been developing ‘champions of science’ for New Zealand primary and intermediate schools. The Academy sessions consist of intensive four-day professional development programmes for teachers of year 1–8 students. Participants are nominated by their schools for their potential to develop new science teaching initiatives and inspire and mentor their colleagues, and in turn their students. The participants hear from a host of skilled presenters and guest speakers on a range of science teaching themes, such as the nature of science, investigative skills, hands-on skills, science for citizenship, and the interconnected nature of science.

The programme doesn’t end with the course. A website allows alumni to continue to share ideas and experiences and Academy staff remain in contact to support graduates. As one participant, Janine Fryer of Pukekohe Intermediate, says “It...resparked my love of teaching and also provided me with an ongoing resource bank to share with my colleagues and students.” The Academy is organised by the National Science-Technology Roadshow Trust and is named for the late Sir Paul Callaghan, who strongly believed in the importance of effective science education for children.
3.2 Action Area 2: Public engaging with science and technology

The goal of this Action Area is to build a nationally supportive environment for public engagement in science and technology. In addition, the Action Area is also designed to increase the number of learners with an interest in STEM-related career pathways. This Action Area recognises the changing demographic of New Zealand including the increasing iwi and hapū asset base and the partnership model of service delivery. It operates with Action Area 3 to encourage greater dialogue between the science sector and the public by helping move toward ‘a more scientifically engaged public’ and ‘a more publicly engaged science sector’.

The immediate objective is to enhance the quality, breadth and depth of science communication to the public by the media, and education and community outreach providers, support youth into science and technology-based careers and build greater connectivity across sectors. In the longer term, Action Area 2 recognises that the culture change that is necessary to encourage and enable public engagement in science must start with young learners, and their teachers, families, whanāu and communities.

Finally, improved evidence on public attitudes to, and engagement with, science and technology, will assist in targeting future actions and form part of the monitoring and evaluation for the plan.

1. Encourage quality initiatives on science and technology for harder-to-reach audiences

New action
› Establish a contestable fund for science and technology outreach and education initiatives for engaging harder-to-reach groups

We will establish a contestable fund that will fund education and community outreach initiatives that focus on science and technology for harder-to-reach groups. This could fund initiatives using innovative approaches for reaching groups such as youth, Māori and Pasifika, and rural New Zealanders. Internationally, similar funds have supported initiatives including robotics workshops across rural areas for future young engineers, the development of a free Apple/Android app that will help people identify native creatures, and a two-day camp for 30 young refugee migrants to inspire them to pursue science at school.

There is growing international recognition that efforts to engage the public in science and technology find their greatest success with people who already have some level of engagement in science. The challenge is to reach and inspire a broader base of New Zealanders through initiatives that bring science and technology to groups that are generally considered harder to reach. This action will support initiatives with a broad reach.

2. Encourage youth into science and technology-based careers

Actions in this area will develop more responsive educational pathways, including the impacts of student study choices, and will develop entrepreneurial thinking in the science and innovation sector. The relevance of science and technology learning to future career options needs to be made clearer at an earlier stage for learners, and the education and training pathways leading to these potential careers should be clarified.

New action
› Increase girls’ participation in science and ICT

We will identify effective actions to influence girls’ subject choices and increase their participation in science and ICT areas of study, especially from year 12, and encourage them to pursue science and technology careers.

› Increase participation in science and ICT for all students

We will identify the Assessment Standards on the New Zealand Qualifications Framework (levels 2 and 3) that will improve the visibility of STEM capabilities.
Supporting actions for youth

› Work with Careers NZ to raise awareness of science and technology careers on the Careers NZ website
› Work to develop and promote the uptake of information for learners about science careers
› Support talented school students through young achievers and travel awards
› Explore more strategic targeting of the Futureintech programme, and other potential changes to increase its impact
› Explore more equitable ways to fund students to attend Learning Experiences Outside the Classroom
› Review and evaluate the pilot of the Science Education Leadership and Coordination role for merit to expand
› Use the Vocational Pathways to design programmes that use real-world contexts to deliver science and technology education in ways that engage learners’ needs and interests
› Consider how to strengthen science literacy in senior secondary schooling particularly at year 11
› Consider the future of the STEM feature in the Occupation Outlook publication.

3. Encourage parents and whānau to increase their engagement with science

New action

› Develop a participatory science platform

The platform (described below at 3.4) will offer early childhood education services, schools/kura and their communities opportunities to participate in scientific research in projects with broad appeal, scientific value and pedagogical rigour that resonate with the community.

The development of parental/whānau and community involvement acknowledges and builds on the importance of parents and families/whānau and local communities as young learners’ first mentors. It also provides an opportunity to encourage parents’ engagement with science through community collaborative research opportunities that bring together science professionals with schools and other community organisations on real-world questions.

4. Build and maintain meaningful linkages between businesses, science and technology educators and learners, and science professionals and technologists

New action

› Connect business with local government, and educators with the science sector

We will explore opportunities to connect businesses with learners, educators, local government and the wider science sector.

Improving connections between science and technology-led businesses and learners at a regional, industry or sector level will give more learners real-world understanding of potential STEM career pathways. It will enable more science and technology-led businesses to promote STEM careers and build early connections with future employees.

5. Encourage quality science journalism and coverage in the multi-platform media

Print, television and online media (including socially networked media and blogging) are powerful tools for engagement with the public. This priority action will continue to harness the positive power of the media to help make science and the complexities of risk and scientific uncertainty more accessible.

Supporting action

› We will enhance the reach of the Science Media Centre to support more training and outreach to science journalists to encourage responsible and insightful science news reporting and analysis that is relevant to the New Zealand public.
6. **Build greater connectivity between the science and education sectors and museums, zoos and science centres**

Supporting action
- We will work with organisations such as museums, zoos and science centres to build greater connectivity with the science and education sectors and agree their role in delivering on the plan.

Non-traditional learning environments, such as those provided by museums, zoos and science centres, can play an important part in encouraging STEM competencies and innovations. Reaching millions of New Zealanders each year, museums and other science organisations facilitate engagement and life-long learning, and are ideally placed as community spaces or forums.

7. **Monitor data about public attitudes to, and engagement with, science and technology**

Supporting action
- We will regularly survey public attitudes to, and engagement with, science and technology.
3.3 Action Area 3: Science sector engaging with the public

Action Area 3 complements Action Area 2 because there cannot be a scientifically engaged public without a publicly engaged science sector. This Action Area recognises the important role that the science sector plays in ensuring the public relevance of research, whether through saleable innovations or policy-relevant results. Publicly funded science organisations and scientists have a social responsibility to share some level of knowledge where it’s applicable. As New Zealanders, we look to science for useful new technologies and evidence-based guidance on the most pressing issues facing our society today.

1. **Support scientists to contribute meaningfully to schools and communities, while advancing their scientific output, by enabling their involvement in participatory research**

 New action
 - Develop and implement a participatory science platform
 - The platform (described below at 3.4) will match scientists with members of schools or community organisations seeking to take part in community-initiated or scientist-initiated research.

2. **Support scientists and science organisations to continue to employ leading edge practices and standards to engage the public in identifying priority research questions and usefully disseminating results of publicly funded research**

 New actions
 - Engaging the public in implementing the National Science Challenges
 - As the National Science Challenges are implemented, we will consider an approach and opportunities to engage the public in their implementation. This project builds on the success of the public engagement process used to identify the National Science Challenges.
 - The Royal Society of New Zealand (RSNZ) will lead the development of a code of practice on public engagement for scientists
 - The RSNZ will work with the scientific community and consult widely including with universities, CRIs, the network of departmental science advisors and the PMCSA to develop a code of practice for scientists on public engagement.

 Supporting actions
 - Public research funding bodies will review and update the knowledge translation expectations for research contracts, and assess the current state of publicly relevant knowledge transfer and end-user engagement practice among funding recipients, including with iwi and Māori organisations. The results of this exercise can be used to inform future expectations.
 - We will continue to implement recommendations of the PMCSA on the use of science-based evidence in policy formation, by creating opportunities, through new departmental science advisors, for the science sector to engage with government and share relevant results with policy makers.

31 A recent model of such a commitment is the Japanese Council of Science’s recently updated Code of Conduct of Scientists, which outlines not only the responsible conduct of research but also the social responsibility of science organisations and scientists to engage with the public and policy makers based on their expert knowledge.
3. Ensure that emerging and established scientists and technology researchers have the basic communication skills to make their research accessible to relevant audiences beyond their peer community

New action
› Public engagement training for science and technology researchers

We will work with the tertiary sector to identify ways to ensure that all emerging and established science and technology researchers have access to training that supports engagement and the dissemination of their knowledge to non-academic audiences.

Supporting action
› We will continue to ensure that scientists’ excellence is acknowledged and showcased through the Prime Minister’s Science Awards.

4. Increase the profile of the work of researchers who are Māori in science/pūtaiao and of all researchers engaged in mātauranga Māori

New action
› Increase the profile of researchers in science/pūtaiao and mātauranga Māori

We will work with researchers who are Māori, and with iwi and Māori organisations about their mātauranga Māori and science/pūtaiao knowledge to increase their profile.

3.4 Integrating Action: The participatory science platform

1. Develop and implement a participatory science platform

While Action Areas 1, 2 and 3 target specific sectoral goals, they are nonetheless interconnected. A unique feature at the heart of this strategic plan is an integrating activity that simultaneously addresses important objectives in all three Action Areas.

The participatory science platform builds on traditional concepts in citizen science and enhances these through collaborative approaches more common to community-based participatory research. Participatory science is a method of undertaking scientific research where volunteers can be meaningfully involved in research in collaboration with science professionals (including post-graduate students or researchers and private sector scientists) and builds on international models of engagement.

The goal is to involve schools/kura and/or community-based organisations such as museums and associations in projects with broad appeal, that have both scientific value and pedagogical rigour, and that resonate with the community. In addition, several ideas are being tested for projects of national significance that would integrate with the National Science Challenges and be national in reach.

The participatory science platform has the potential to:
› offer inspiring and relevant learning opportunities for students and teachers
› engage learners and participants beyond the school/kura community to reach parents, whānau and wider communities
› offer researchers opportunities to become involved in locally relevant lines of enquiry, where data can be enriched by the local knowledge and contribution of citizens.

The participatory science platform is built on four core components and incorporates mātauranga Māori:

1. A process that seeks ideas for participatory science projects both from the community (including early childhood education services and kāhanga reo, schools/kura, museums and other organisations, iwi authorities or community associations) and from science professionals (from post-graduate students to principal investigators in both the public and private sectors)
2. A managed process for evaluating these ideas for both pedagogical potential (in the case of schools/kura) and scientific quality, and for ensuring their practicality and relevance to the participating partners (science sector and community-based)

3. A web-based match-making process between interested community-based partners and science professionals

4. A resource for teachers and other community or learning leaders to assist in developing their projects to robust standards.

The platform’s website will serve as a match-making tool between scientists and potential community-based partners seeking to take part in a research project by offering a platform for community-initiated and scientist-initiated research.

A multi-sectoral management and review panel will be established to maintain quality control over the programme and advise on any research ethics requirements.

All projects will have an institutional home which will provide a coordination role. This could be a school, museum, zoo, science centre, iwi office or research institute, university or other tertiary organisation.

The projects will be offered as opportunities for community-based partners to participate in scientific research as a way to enhance their local input, their science knowledge and their interest, and (in the case of schools) to strengthen learning programmes through stronger links to relevant learning environments and expertise.

Once matches are made between community-based partners and scientists, these partners would self-direct their involvement in carrying out the research according to an agreed plan and approach.

A multi-media campaign will accompany the launch of programme, and a dedicated website/social media site will provide a sustained channel of communication for ideas that continue to emerge. It will build on the momentum created by the Great New Zealand Science Project and leverages the legacy of that project, including its Facebook page.

To enable more sophisticated projects, a limited number of seed grants will be made available to help foster a meaningful level of community involvement. The seed grants will part-fund science professionals and community/school groups to plan together the research question, data collection, analysis and knowledge translation strategy for the project. In addition, eligible costs could include research tools or consumables that would not otherwise be accessible to community partners.

3.5 Other government initiatives that will support the plan

Other government initiatives will contribute to delivering on this plan such as:

› Investing in Educational Success – a teaching and leadership career pathways initiative which targets raising achievement through quality teaching and professional leadership and offers an expanding environment in support of the principal objective of this plan

› New Zealand Qualifications Authority review of qualifications – mandatory reviews of levels 1–6 science qualifications and the review of tertiary teaching qualifications are taking place during 2014

› The Tertiary Education Strategy (TES) has two strategic priorities that are most relevant for this plan: Priority 1, delivering skills for industry, including in areas of new and emerging shortage such as science and technology; and Priority 5, strengthening research-based institutions. The TES emphasises the importance of tertiary institutions being more outwardly focused and, in particular, connecting learning to employment outcomes and encouraging providers to be more connected to industries and communities

› The State Services Commission’s efforts to include action for better use of evidence in public policy formation is being operationalised through the creation of a number of departmental science advisor (DSA) roles and the creation of a network of these advisors chaired by the PMCSA. This plan recognises the role of scientists to better connect with the public service through the DSA network and other opportunities to bring evidence into policy formation
The Office of the PMCSA was established, in part, to address the role of science in society. Positioned at the nexus of the science sector, government, and the public, a central focus of the Office is to help establish better communication of concepts in science and research to the public and to government. This plan recognises the uniqueness of the PMCSA model internationally and can leverage the channel of public communication that the Office provides.

MBIE’s Vision Mātauranga policy aims to unlock the science and innovation potential of Māori knowledge, people and resources for the benefit of New Zealand. The four themes of the Vision Mātauranga policy are:

- indigenous innovation: contributing to economic growth through distinctive science and innovation
- taiao/environment: achieving environmental sustainability through iwi and hapū relationships with land and sea
- hauora/health: improving health and social wellbeing
- mātauranga: exploring indigenous knowledge and science and innovation.

For this reason the Vision Mātauranga policy is embedded across all science investments, and forms a core component for the implementation of MBIE’s approach to supporting outcomes for Māori and New Zealand.

CASE STUDY

WHAT IF WE COULD EARN EXTRA FROM OUR PINE FORESTS?

That’s the question that faced the 1,100 beneficiaries of the vast central North Island forest block known as Maraeroa C Incorporation. They are the direct descendants of Rereahu – whose ancestor was Hoturoa, the captain of the Tainui waka. Their ancestral land covers a huge area of South Waikato and King Country. The shade-loving ginseng plant – highly valued in Chinese medicine – seemed a good candidate as an under-crop to the pine plantations. Wild-grown ginseng – the most sought after – is in decline after years of over-harvest. As a result, chief executive Glen Katu says they saw a gap in the Chinese market for ginseng grown in wild natural conditions with no fertilisers or pesticides. “It takes longer to grow and the roots are much smaller but are more highly valued.”

Scientists from Crown research institute Scion have been working with the team that manages Maraeroa C, to identify suitable climate, soil and topography conditions in the central North Island to grow ginseng as an understory crop to radiata pine plantations. The research suggests over half the 450,000 hectares of planted radiata forests in the central North Island are suitable for producing top-quality ginseng roots and the benefits economically could be significant, with premium dried ginseng fetching around $2,000 per kilo.
HELP INSPIRE AND PROVIDE AUTHENTIC LEARNING OPPORTUNITIES OF RELEVANCE AND INTEREST TO STUDENTS.
Addressing the challenges described in the plan are longer-term issues that will require a commitment to sustained change. It will also require us to learn, modify as we go, and continue engaging with stakeholders.

4.1 Implementation approach

As this is the first Science in Society plan, the government has asked the Science in Society Reference Group to reconvene in 2015 to review progress and advise about any modifications to the actions to better deliver on the outcomes. MBIE and MoE together with the PMCSA will oversee implementation of the plan by government agencies, iwi and other sectors including the education, science, business and museum sectors. The two agencies will also lead a process of engagement with the public on the plan and the actions in it.

Central to the terms of reference of the PMCSA is to support an improved and productive relationship between science and society. As such, the PMCSA and the DSA network will continue to be active in implementing the plan.

4.2 Timeframe

While the challenges are long term, the plan sets out a direction for the next 10 years and actions for the next three years from 2014 to 2017. The actions may be modified and enhanced as we learn more over the life of the plan.

Some actions are already underway, as they continue or enhance effective existing actions. Enhancing the role of the Science Media Centre and MoE’s pilot of a strategic leadership and coordination role for better connecting schools and the science sector are examples of these actions.

The plan also includes actions that can be implemented in the short to medium term. For example, the participatory science platform and the contestable fund for initiatives focused on science outreach and engaging harder-to-reach groups will be developed in 2014/15 for implementation in 2015/16.

Finally, some of the proposed Action Areas for the education sector require a longer term (over school years 1–6) approach. This will ensure that there is sufficient time to address changes around, for example, initial teacher education, and linking classrooms to the professional science sector. These actions will help inspire and provide authentic learning opportunities of relevance and interest to students.
4.3 Monitoring and evaluation

Monitoring will comprise:

› a survey of public attitudes toward science, complemented by in-depth qualitative research with the general public
› analysis and synthesis of education and skills data, for example student achievement in science and maths
› analysis and synthesis of administrative data, for example monitoring of relevant contracts and science communications measures and indicators
› formal and informal stakeholder consultation.

MBIE has developed an intervention logic to inform the monitoring activities (Annex 1). The intervention logic details the links between the challenges that Science in Society seeks to address, the activities being undertaken within the Action Areas and their intended impacts and outcomes. These impacts and outcomes include short-term changes in awareness, medium-term changes in behaviour, and long-term changes in terms of a skilled workforce, informed New Zealanders and responsive science and technology. The intervention logic model will inform the selection of indicators and measures for monitoring purposes.

Work to date has included MBIE commissioning (in June 2014) a survey of public attitudes towards science and technology and the ways in which the public conceptualises science. This survey retains some questions asked in previous studies for comparison and thus will identify changes in public attitudes from those previous studies. Responses to questions in the survey will form part of the baseline measures for monitoring the initial plan.

The Ministry of Education is able to utilise existing data collection and analysis to monitor the impact of the plan. The Ministry regularly publishes data about student achievement in science and mathematics through Public Achievement Information (PAI), which is available on www.educationcounts.govt.nz.

The performance framework for the National Science Challenges will include some assessment of public engagement in science.

Monitoring and evaluation will establish a baseline and track progress against the initial plan’s outcomes. It will also assess the performance of specific Action Areas. In response, initiatives that are making a measurable contribution to the expected outcomes will be continually adapted and extended.

The monitoring and evaluation activities for this plan are founded on the plan’s three expected outcomes as follows.

Outcome 1: More science and technology competent learners and more choosing STEM-related career pathways

We will know we’re making progress on this when:

› we achieve greater student demand for STEM courses and qualifications at all levels of the qualifications framework (1–10)
› we have developed greater teacher confidence in teaching for science, technology and mathematics (STM) outcomes
› teachers have improved access to the resources they need to teach STM subjects and links between the STM curriculum and career pathways are clarified.
Outcome 2: A more scientifically and technologically engaged public and a more publicly engaged science sector

We will know we’re making progress on this when:

› a greater proportion of New Zealanders across all sectors of society are engaged with, and value, science and technology
› there is more in-depth media reporting on science and technology based on robust scientific evidence
› there are increased opportunities for the public to learn about, and be involved in, scientific research and uptake continues to grow across all tiers of society
› there are more opportunities for the public and the science sector to engage in discussion about societal use and limits of new technology and applications for existing technology.

Outcome 3: A more skilled workforce and more responsive science and technology

In the longer term, we expect that progress towards outcomes 1 and 2 will contribute to New Zealand’s economic growth and improved social and environmental outcomes through:

› a greater number of New Zealanders with the skills needed to support creativity, innovation and knowledge uptake and use
› publicly funded science and technology are more responsive to the needs of New Zealanders.
Annex 1: Intervention logic

Challenges

<table>
<thead>
<tr>
<th>Incrementing the numbers of learners with science, technology and engineering competencies to meet the needs of their everyday lives and the 21st century labour market</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increasing the engagement of New Zealanders with science and technology</td>
</tr>
<tr>
<td>Increasing the effectiveness of the science sector’s engagement with the public</td>
</tr>
</tbody>
</table>

Action Areas

Enhancing the role of education

- Improve initial teacher education
- Better professional learning and development
- Stronger links between STEM educators, learners, scientists and technologists

Public engaging with science and technology

- Encourage quality science and technology outreach and education initiatives for harder-to-reach groups
- Encourage young people into science and technology careers
- Encourage parents/whānau to engage with science
- Encourage high-quality science journalism
- Build stronger links between the science and education sectors and museums, zoos and science centres
- Monitor data about public attitudes/engagement with science and technology

Science sector engaging with the public

- Support scientists to contribute to education
- Ensure scientists use leading edge public engagement practice and standards
- Ensure scientists know how to make research accessible
- Increase profile of Māori science/pūtaiao researchers and researchers in mātauranga Māori

Participatory Science

Actors

Education sector

- All learners
- All teachers
- All tertiary providers

Public

Science sector

Objective

Better engagement with science and technology across all sectors of New Zealand

Outcomes (medium term)

- More science and technology-competent learners and more choosing STEM careers
- More scientifically and technologically engaged public and more publicly engaged science sector

Objective outcomes (longer term)

More skilled workforce

Skilled workforce with a greater number of New Zealanders with the skills needed to support creativity, innovation and knowledge uptake and use

More responsive science and technology

Publicly funded science and technology are more responsive to the needs of New Zealanders
Annex 2: Process for developing this plan

This plan was developed by MBIE, MoE and the Office of PMCSA on behalf of the Government.

A Science in Society Reference Group of experts provided advice to assist the government to develop this plan. The members of the Group are:

<table>
<thead>
<tr>
<th>Name</th>
<th>Role</th>
</tr>
</thead>
<tbody>
<tr>
<td>Professor Sir Peter Gluckman (Chair)</td>
<td>Professor Sir Peter Gluckman is the PMCSA. He was the founding Director of the Liggins Institute and is one of New Zealand’s best-known scientists. He is internationally respected for his work promoting the use of evidence in policy formation and the translation of scientific knowledge into better social, economic and environmental outcomes. Professor Sir Peter is a Fellow of The Royal Society (London), the Commonwealth’s most prestigious scientific organisation. He is the only New Zealander elected to the Institute of Medicine of the National Academy of Sciences (USA) and the Academy of Medical Sciences of Great Britain. In 2009, he became a Knight of the New Zealand Order of Merit for services to medicine. In 2001, he received New Zealand’s top science award, the Rutherford Medal.</td>
</tr>
<tr>
<td>Professor Jim Metson (Deputy Chair)</td>
<td>Professor Jim Metson is Chief Science Advisor to MBIE. He has a PhD in Chemistry from Victoria University of Wellington and is Deputy Dean of Science at the University of Auckland, Professor in its School of Chemical Sciences, and Associate Director of the University’s Light Metals Research Centre. He has a background in building science capability, and has led the formation of several major interdisciplinary research centres at the University.</td>
</tr>
<tr>
<td>Professor Alister Jones</td>
<td>Professor Alister Jones is Deputy Vice-Chancellor of the University of Waikato. He was Dean of Education and Research Professor and Director of the Wilf Malcolm Institute of Educational Research at the Faculty of Education. He has managed and directed research projects that have informed policy, curriculum, science and technology education, and teacher development in New Zealand and internationally. He was awarded the New Zealand Science and Technology Medal. He is Co-Director of the Science Learning Hubs and co-chairs an APEC working group on science and mathematics education.</td>
</tr>
<tr>
<td>Jacquie Bay</td>
<td>Jacquie Bay is the founding Director of LENScience, an innovative science education programme within the Liggins Institute. She co-developed the award-winning LENScience Connect learning platform for science education.</td>
</tr>
<tr>
<td>Hikitia Ropata</td>
<td>Hikitia Ropata is the General Manager Strategic Development at Careers NZ. She is also a member of the Export Industry Skills Analysis Advisory Group. She has worked across both social and economic policy and delivery. Her specific interest is in getting more New Zealanders interested and participating in science and technology careers, particularly Māori and Pasifika. She is of Ngāti Toa, Ngāti Raukawa, Te Ati Awa and Ngāti Porou descent.</td>
</tr>
<tr>
<td>Peter Griffin</td>
<td>Peter Griffin is the founding manager of the Science Media Centre and the founder and editor of Sciblogs. He was Technology Editor of the New Zealand Herald, technology columnist for the Herald on Sunday and a commentator for TVNZ, Radio New Zealand and Radio Live. In 2012, Peter was a Fulbright-Harkness Fellow undertaking research in the US looking at centres of excellence in public interest journalism.</td>
</tr>
</tbody>
</table>
Richard Meylan is Senior Manager Public Engagement and Education at the Royal Society of New Zealand and was formerly Principal Adviser to the New Zealand Ministry of Research, Science and Technology. He is a former teacher and in 2011 spent nine months on a sabbatical to the International Council for Science in Paris.

Lee Parkinson is a communications consultant. A Chartered Marketer and Fellow of the Chartered Institute of Marketing, he is Managing Partner of connections and communications agency The Family. Lee attended the Transit of Venus forum and was consulted in the development of the communications approach for the Great New Zealand Science Project.

Dr Steven Sexton is President of the New Zealand Association of Science Educators. He is a senior lecturer in Science Education at the College of Education at the University of Otago. He was a primary school teacher.

Dr Jan Giffney is Head of Science at St Cuthbert’s College, Auckland. She was honoured with a prestigious professional award – the Independent Schools of New Zealand Excellence in Teaching Award for Exceptional Professional Performance for Years 11–13. She is also an experienced chemistry teacher with a long history of involvement in the New Zealand Chemistry Olympiad programme.

Ally Bull leads the science education team at the New Zealand Council for Educational Research. She has expertise in research on science education and is co-convenor of the New Zealand Association for Research Education Science Education Special Interest Group.

Angela Christie is Director – Schools at the Institution of Professional Engineers of New Zealand (IPENZ). She is responsible for the development and implementation of the Futureintech Project – a government-funded careers promotion initiative. She also manages the IPENZ school programmes.

Evan Brenton-Rule is winner of the 2013 Eureka Award for Young Science Orators for his presentation about a solution to the threat posed by invasive species in New Zealand. Evan is studying towards law and science degrees at Victoria University of Wellington.

The membership of the Science in Society Reference Group will be reviewed before it is reconvened in 2015.

We would like to thank the following stakeholders for their contribution to the plan through providing feedback on an earlier draft or drafts of the plan: the Reference Group; the National Science Challenges Panel; Business New Zealand; the Chief Executive of Science New Zealand; the New Zealand Association of Scientists; municipal museums; the Royal Society of New Zealand; the Chambers of Commerce; Callaghan Innovation; the Secondary Principals’ Association of New Zealand; New Zealand Principals’ Federation; the Post-Primary Teachers’ Association; the New Zealand Educational Institute; the leadership of universities, polytechnics and wānanga; the Tertiary Education Union; the New Zealand Union of Students’ Associations; the National Science-Technology Roadshow Trust; and stakeholders from the Society for Māori Astronomy Research and Traditions and Ngā Pae o te Māramatanga.
Annex 3: Key definitions

What do we mean by science, technology and STEM?

Science is a set of formal processes that interrogates the ‘real things’ or phenomena of the natural and social world in order to construct explanations of them. It describes a way of thinking about the world, a creative process which generates knowledge and the ability to think critically about that knowledge. The New Zealand Curriculum describes science as “a way of investigating, understanding and explaining our natural, physical world and the wider universe”. It involves generating and testing ideas, and gathering evidence through various means which include observation, investigation, modelling, and communication and debate with others to develop scientific knowledge, understanding and explanations.

Science knowledge means both knowledge of the processes, methods and facts of science on one hand, and knowledge about science’s applications and limitations on the other. Certain audiences will specialise in knowledge ‘of’ science, but basic knowledge ‘about’ science is broader and is an important tool of 21st century citizenship and public discussion on today’s most pressing societal concerns. This has been referred to as ‘critical science literacy’. We acknowledge that ‘knowledge’ may also mean the science sector’s own knowledge of various public audiences and how to connect with these to make their science relevant.

Technology intervenes in the world to solve problems or meet needs or desires; that is, to create part of the made world. The New Zealand Curriculum describes technology as “intervention by design: the use of practical and intellectual resources to develop products and systems that expand human possibilities by addressing needs and realising opportunities. Adaptation and innovation are at the heart of technological practice...which is never static”.

STEM is the internationally recognised term that refers to subjects or areas of learning, namely science, technology, engineering and mathematics, which are used broadly and include all levels of learning. Often the acronym is used as shorthand to denote the family of numerate subjects, even when one or more are not considered. In the plan, we distinguish deliberately between STEM and STM, which refers to compulsory level subjects (science, technology and mathematics) because engineering is taught only at tertiary level. STE refers to science, technology and engineering subjects.

What do we mean by engagement?

Engagement can and should be a range of things for different people and at different times, and is dependent upon purpose.

The goal of ‘engagement’ in the plan is to recognise and enable the role that we all have in understanding, becoming informed and questioning what we need science to address and what we do with the new knowledge that science produces.

33 The New Zealand Curriculum, p28
35 See footnote 33
36 The New Zealand Curriculum, p32
In some instances, this is through the opportunity to learn in a more hands-on and relevant way that can help shape our attitudes and decisions. In other situations, it is a participatory tool for a more open approach to research and for making decisions about how to use the information it produces. This is one way that a stronger relationship between science and society can be developed.

For the public (including government) ‘engagement’ means the acquisition and application of multiple types of STEM knowledge by multiple kinds of audiences for various purposes.

For the science sector it involves communicating new knowledge clearly for different users, as well as undertaking research and responding to the knowledge needs of society.

Taken together these characteristics of ‘engagement’ imply an improved and productive social relationship between the science sector and wider society that will lead to the responsible application of knowledge for the social, environmental and economic wellbeing of New Zealanders.

Thus, in the plan, the focus is on public engagement in:

› acquiring knowledge, which is about the public, especially compulsory-level learners, acquiring the STE skills and knowledge needed to develop a career in science and/or to engage in much-needed and ongoing public conversations about the application of scientific knowledge and technology

› generating knowledge, which is about knowledge users, including the public, being enabled to help identify issues requiring science input so that public science research is more relevant and stands to have more meaningful impact. It is also about the public being part of the research itself, including through opportunities in participatory science

› applying knowledge, which is about being enabled to make the best use of what we know, including the responsible and evolving use, or limiting, or new technologies, or novel applications of existing technology.

This definition of engagement reflects a fresh approach through a necessary mix of what has in the past been called ‘public understanding of science’ or ‘science literacy’ and of ‘public engagement in science’37.

Annex 4: Description of initiatives

<table>
<thead>
<tr>
<th>Goal</th>
<th>Action</th>
<th>Status</th>
<th>Lead agency</th>
<th>Other agencies</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lift the science and technology content in initial teacher education</td>
<td>Work with initial teacher education providers, qualification accreditation bodies and relevant professional bodies to consider the nature and scope of science and technology content in initial teacher education</td>
<td>Green</td>
<td>MoE</td>
<td></td>
<td>This could form a component of under-graduate qualifications for primary education, and would be targeted to lift the confidence of graduating teachers to teach science and technology (teachers currently report limited confidence, particularly at years 7–8).</td>
</tr>
<tr>
<td>Improve the quality and relevance of continuing professional learning and development opportunities for teachers in science and technology</td>
<td>MoE provides professional learning and development (PLD) in both English-medium and Māori-medium to build teacher capability and confidence to deliver learning programmes in science/pūtaiao, technology/hangarau and mathematics/pāngarau</td>
<td>Blue</td>
<td>MoE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Support the Science/Biotechnology Learning Hubs to provide an online repository of New Zealand science for use by teachers, students and communities</td>
<td>MBIE</td>
<td>Orange</td>
<td>MBIE</td>
<td></td>
<td>In 2014/15, support the Science/Biotechnology Learning Hubs as a high-quality online repository of New Zealand science and resources to support science education.</td>
</tr>
</tbody>
</table>

Enhancing the role of education

In 2014/15, reframe the teacher fellowship programme to further imbed the leadership responsibilities within the school community, enhance leadership competencies and align with Ministry of Education initiatives.

Provide primary and secondary school teachers with opportunities to work with research organisations and develop leadership skills to enhance the teaching of science within school communities

Support the Science/Biotechnology Learning Hubs to provide an online repository of New Zealand science for use by teachers, students and communities

In 2014/15, support the Science/Biotechnology Learning Hubs as a high-quality online repository of New Zealand science and resources to support science education.
<table>
<thead>
<tr>
<th>Goal</th>
<th>Action</th>
<th>Status</th>
<th>Lead agency</th>
<th>Other agencies</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enhancing the role of education</td>
<td>Create a Science Skills in Education initiative to support schools and teachers to build confidence and access resources to develop rich, contextualised science programmes that are exciting for students</td>
<td></td>
<td>MoE</td>
<td></td>
<td>The initiative will be developed with education and industry stakeholders to create a network between local industry, local and national government, and schools, to assist teachers to continue their science education with providers who have a proven record of excellence in science teaching. Examples include access to courses for primary teachers, with a focus on developing science skills and knowledge that reflect science/pūtaiao in the national curriculum, and expanding the availability of the Sir Paul Callaghan Science Academy initiative. This initiative focuses on teacher learning, and will explore links to the Teachers in Industry project as appropriate.</td>
</tr>
<tr>
<td></td>
<td>Create a Teachers in Industry project for teachers, to connect schools with science intensive businesses to enable teachers to spend a period of time in the businesses to bring business relevant content into their science lesson plans</td>
<td></td>
<td>MoE</td>
<td></td>
<td>This initiative focuses on building the currency of programmes, and will explore links to the Science Skills in Education initiative as appropriate. Participants will be supported to reflect on the practical application of science in industry for their lesson plans, upscale Learning and Change Networks for science, and explore the development of virtual learning networks for science teachers on the Network 4 Learning portal. This will enable groups of schools to connect with the broader community while focusing on raising science literacy.</td>
</tr>
<tr>
<td>Goal</td>
<td>Action</td>
<td>Status</td>
<td>Lead agency</td>
<td>Other agencies</td>
<td>Comment</td>
</tr>
<tr>
<td>------</td>
<td>--------</td>
<td>--------</td>
<td>-------------</td>
<td>---------------</td>
<td>---------</td>
</tr>
<tr>
<td>Develop science and technology curriculum materials and support teachers to use them</td>
<td>The New Zealand Curriculum (NZC) and Te Marautanga o Aotearoa address STM skills development and building a scientifically and technologically engaged population more generally</td>
<td>MoE</td>
<td>Other agencies</td>
<td>The NZC identifies five key competencies which are to be developed through the opportunities afforded students in the eight learning areas of the curriculum. Science literacy is valued as an outcome at the heart of the science learning part of the NZC. It is supported by students developing the key competencies as well as by other resources in other education and community contexts.</td>
<td></td>
</tr>
<tr>
<td>Enhancing the role of education</td>
<td>Children experience an environment where they develop working theories for making sense of the natural, social, physical and material worlds</td>
<td>Te Whāriki – Strand 5: Exploration</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Establish Learning and Change Networks with a dedicated focus on student achievement in science</td>
<td>The Matakōkiri project supports students to engage with science by linking science/pūtaiao to Māori language, culture and identity through students’ local tikanga, whakapapa and stories</td>
<td>Te Taumata o Ngāti Whakaue Iko Ake Trust</td>
<td></td>
<td>The project is an iwitanga-based science programme run by Te Taumata o Ngāti Whakaue Iko Ake Trust in their rohe for their students, whānau, teachers and schools.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MoE</td>
<td></td>
<td>These are communities of practice that provide an environment for the building of sustainable partnerships between families, whānau, iwi, schools and kura to listen to student voices about what matters most for their learning and achievement. Together these communities co-construct responses to a learning challenge to enable accelerated progress towards equitable outcomes for priority groups and student achievement. In 2014, new networks will be established with a dedicated focus on student achievement in science.</td>
<td></td>
</tr>
<tr>
<td>Goal</td>
<td>Action</td>
<td>Status</td>
<td>Lead agency</td>
<td>Other agencies</td>
<td>Comment</td>
</tr>
<tr>
<td>------</td>
<td>--------</td>
<td>--------</td>
<td>-------------</td>
<td>----------------</td>
<td>---------</td>
</tr>
<tr>
<td>Enhancing the role of education</td>
<td>A range of online and print publications to support quality teaching, learning and assessment</td>
<td></td>
<td>MoE</td>
<td></td>
<td>These focus on how to deliver personalised learning, develop authentic learning experiences for students and build partnerships between schools, teachers, students, families and whānau, and communities to ensure the diversity of STEM education and success for all learners.</td>
</tr>
<tr>
<td></td>
<td>Review the positioning and content of digital technology within the framework of the New Zealand Curriculum and Te Marautanga o Aotearoa</td>
<td></td>
<td>MoE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Encourage quality science journalism and coverage in the multi-platform media</td>
<td>The Ministry of Education will work alongside sector partners to review the positioning and content of digital technology within the framework of the New Zealand Curriculum and Te Marautanga o Aotearoa</td>
<td></td>
<td>MBIE</td>
<td></td>
<td>In 2014/15, enhance the reach of the Science Media Centre to support more training and outreach to science journalists and encourage responsible and insightful science news reporting and analysis that are relevant to the New Zealand public.</td>
</tr>
<tr>
<td>Encourage quality initiatives on science and technology for harder-to-reach audiences</td>
<td>Establish a contestable fund for initiatives focused on science outreach and on engaging harder-to-reach groups</td>
<td></td>
<td>MBIE</td>
<td></td>
<td>To be designed and piloted in 2014/15 and, subject to the results of the pilot, implemented in 2015/16.</td>
</tr>
<tr>
<td>Encourage youth into science and technology-based careers</td>
<td>The STEM feature in the 2014 Occupation Outlook identified the current and future demand for STEM-related careers</td>
<td></td>
<td>MBIE</td>
<td></td>
<td>To consider its future in 2014/15.</td>
</tr>
<tr>
<td>Public engaging with the science sector</td>
<td>Youth Transitions Framework that focuses on more young people participating in learning areas of high growth and demand (eg STEM subjects)</td>
<td></td>
<td>TEC</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Māori Future Makers website, whichprofiles Māori and whānau in non-traditional, knowledge-intensive sectors</td>
<td></td>
<td>TPK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Goal</td>
<td>Action</td>
<td>Status</td>
<td>Lead agency</td>
<td>Other agencies</td>
<td>Comment</td>
</tr>
<tr>
<td>------</td>
<td>--------</td>
<td>--------</td>
<td>-------------</td>
<td>----------------</td>
<td>---------</td>
</tr>
<tr>
<td>Public engaging with the science sector</td>
<td>Work with Careers NZ to raise awareness of science and technology careers on the Careers NZ website</td>
<td></td>
<td>Careers NZ</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Support Young Achievers Awards</td>
<td></td>
<td>MBIE</td>
<td></td>
<td>Awards to continue.</td>
</tr>
<tr>
<td></td>
<td>Talented Secondary School Students Travel Awards</td>
<td></td>
<td>MBIE</td>
<td></td>
<td>In 2014/15, extend the programme to intermediate students and provide additional flexibility to reach more low decile students.</td>
</tr>
<tr>
<td></td>
<td>Work to develop and promote the uptake of information for learners about science careers</td>
<td></td>
<td>MoE</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Use Vocational Pathways to design programmes that use real-world contexts to deliver science and technology education in ways that engage with learners’ needs and interests</td>
<td></td>
<td>MoE</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Explore more equitable ways to fund students attending Learning Experiences Outside The Classroom</td>
<td></td>
<td>MoE</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Increase participation in science and ICT for all students</td>
<td></td>
<td>MoE</td>
<td></td>
<td>Identify the assessment standards on the National Qualifications Framework (levels 2 and 3) that will improve the visibility of STEM capabilities within assessment standards.</td>
</tr>
<tr>
<td></td>
<td>School and science sector partnerships that support school students’ science learning. The aim is to develop sustainable links between the science education community and schools to make the most of New Zealand’s collective strengths and resources</td>
<td></td>
<td>MoE</td>
<td></td>
<td>A pilot will run through to July 2014 to build school and science sector partnerships that support school students’ science learning, and test such a leadership and coordination role for strategic effectiveness to inform a wider system change in 2015/16.</td>
</tr>
<tr>
<td></td>
<td>Consider how to strengthen science literacy in senior secondary schooling particularly at year 11</td>
<td></td>
<td>MoE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Goal</td>
<td>Action</td>
<td>Status</td>
<td>Lead agency</td>
<td>Other agencies</td>
<td>Comment</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>--</td>
<td>--------</td>
<td>------------------------</td>
<td>--------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Public engaging with the science sector</td>
<td>Promote STEM careers to students through the Futureintech programme</td>
<td></td>
<td>Callaghan Innovation</td>
<td></td>
<td>In 2014/15, explore more strategic targeting of the programme, and other potential changes to increase its impact.</td>
</tr>
<tr>
<td></td>
<td>Increase girls' participation in science and ICT</td>
<td></td>
<td>MBIE and MoE</td>
<td></td>
<td>Identify effective actions to influence girls' subject choices and increase their participation in science and ICT areas of study, especially from year 12, and encourage them to pursue science and technology careers.</td>
</tr>
<tr>
<td>Build and maintain meaningful links between business, science and technology educators and learners, and science professionals and technologists</td>
<td>Explore opportunities to better connect business, local government, educators, learners and the science sector at a regional, industry or sector level</td>
<td></td>
<td>MBIE</td>
<td></td>
<td>To be considered in 2014/15 and, subject to the results, implemented in 2015/16.</td>
</tr>
<tr>
<td>Build greater connectivity between the science and education sectors and museums, zoos and science centres</td>
<td>Work with organisations such as museums, zoos and science centres to build greater connectivity with the science and education sectors and agree the role of museums, science centres and zoos in delivering on the plan</td>
<td></td>
<td>MBIE, MCH</td>
<td></td>
<td>To begin in 2014/15.</td>
</tr>
<tr>
<td>Monitor data on public attitudes to, and engagement with, science and technology</td>
<td>Regularly survey public attitudes to, and engagement with, science and technology</td>
<td></td>
<td>MBIE</td>
<td></td>
<td>Survey to be carried out in 2014 and a regular programme agreed.</td>
</tr>
</tbody>
</table>
Science sector engaging with the public

<table>
<thead>
<tr>
<th>Goal</th>
<th>Action</th>
<th>Status</th>
<th>Lead agency</th>
<th>Other agencies</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Support scientists and science organisations to continue to employ leading-edge practices and standards to engage relevant public(s) in identifying priority research questions and usefully disseminating results for publicly funded research</td>
<td>Government expectations on researchers receiving public funds to make research public and provide public engagement and outreach</td>
<td>MBIE, TEC</td>
<td></td>
<td></td>
<td>From 2015/16, review and update the knowledge translation expectations for research contracts, and assess the current state of publicly relevant knowledge transfer and end-user engagement practice among funding recipients. Results can be used to inform future expectations.</td>
</tr>
<tr>
<td></td>
<td>Crown research institutes’ (CRIs) statement of core purpose in the Crown Research Institutes Act 1992 include expectations about engagement with key stakeholders and the transfer of technology and knowledge to key stakeholders</td>
<td>MBIE, CRIs</td>
<td></td>
<td></td>
<td>No changes proposed.</td>
</tr>
<tr>
<td></td>
<td>Request for proposals for the first 10 National Science Challenges sets a key objective for engagement by the science sector with the public</td>
<td>MBIE</td>
<td></td>
<td></td>
<td>In 2014/15, build on the success of the public engagement process used to identify the National Science Challenges by considering an approach and opportunities to engage the public in the implementation phase of the National Science Challenges.</td>
</tr>
<tr>
<td></td>
<td>The RSNZ will lead development of a code of practice on public engagement for scientists</td>
<td>RSNZ</td>
<td></td>
<td></td>
<td>To begin in 2014/15.</td>
</tr>
<tr>
<td></td>
<td>Continue to implement recommendations of the PMCSA on the use of science-based evidence in policy formation by creating opportunities, through new Departmental Science Advisors for the science sector to engage with government and share relevant results with policy makers</td>
<td>SSC, PMCSA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Goal</td>
<td>Action</td>
<td>Status</td>
<td>Lead agency</td>
<td>Other agencies</td>
<td>Comment</td>
</tr>
<tr>
<td>------</td>
<td>--------</td>
<td>--------</td>
<td>-------------</td>
<td>----------------</td>
<td>---------</td>
</tr>
<tr>
<td>Ensure emerging and established scientists and technology researchers have the basic communication skills to make their research accessible to relevant audiences beyond their peer community</td>
<td>Work with the tertiary sector to identify ways to ensure that all emerging and established science and technology researchers have access to training that supports engagement with, and dissemination of their knowledge to, non-academic audiences</td>
<td></td>
<td>MBIE, MoE, TEC</td>
<td>To begin in 2014/15.</td>
<td></td>
</tr>
<tr>
<td>Science sector engaging with the public</td>
<td>The Prime Minister’s Science Prizes and the Rutherford Medal – prizes for scientific research or technological practice that raises the profile and prestige of science</td>
<td></td>
<td>MBIE</td>
<td>Prizes to continue to showcase scientists’ excellence.</td>
<td></td>
</tr>
<tr>
<td>Increase the profile of the work of Māori researchers in science/pūtaiao and of all researchers engaged in mātauranga Māori</td>
<td>Increase the profile of the work of researchers who are Māori in science/pūtaiao and of all researchers engaged in mātauranga Māori by engaging with researchers who are Māori with iwi and with Māori organisations about their mātauranga Māori and science knowledge and science projects</td>
<td></td>
<td>MBIE, PMCSA</td>
<td>To begin in 2014/15.</td>
<td></td>
</tr>
<tr>
<td>Across all Action Areas</td>
<td>Develop and implement a participatory science platform</td>
<td></td>
<td>MBIE, MoE</td>
<td>To be designed and piloted in 2014/15 and, subject to the results of the pilot, implemented in 2015/16.</td>
<td></td>
</tr>
</tbody>
</table>